An Architecture for a Generalized Spacecraft Trajectory Design and Optimization System

نویسنده

  • Cesar Ocampo
چکیده

The elements of a general high precision system for trajectory design and optimization for single or multiple spacecraft using one or more distinct propulsion systems, and operating in any gravitational environment within the solar system are discussed. The system architecture attempts to consolidate most all spacecraft trajectory design and optimization problems by using a single framework that requires solutions to either a system of nonlinear equations or a parameter optimization problem with general equality and/or inequality constraints. The use of multiple reference frames that generally translate, rotate, and pulsate between two arbitrary celestial bodies facilitates the analysis of multiple celestial body force field trajectories such as those associated with libration point missions, cycling trajectories between any set of celestial bodies, or any other type of trajectory or mission requiring the use of multiple celestial bodies. A basic trajectory building block, referred to as the basic segment, that can accommodate impulsive maneuvers, maneuver and non-maneuver based mass discontinuities, and finite burn or finite control acceleration maneuvers, is used to construct single or multiple spacecraft trajectories. The system architecture facilitates the modeling and optimization of a large range of problems ranging from single spacecraft trajectory design around a single celestial body to complex missions using multiple spacecraft, multiple propulsion systems, and operating in multiple celestial body force fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-performance three-dimensional maneuvers control in the area of spacecraft

Contemporary research is improving techniques to maneuvers control in the area of spacecraft. In the aspect of further development of investigations, a high-performance strategy of maneuvers control is proposed in the present research to be applicable to deal with a class of the aforementioned spacecrafts. In a word, the main subject behind the research is to realize a high-performance three-di...

متن کامل

Design of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft

Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Preliminary Design of Spacecraft Attitude Control with Pulse-Width Pulse-Frequency Modulator for Rest-to-Rest Maneuvers

In this paper, the preferred region of design parameters for quasi-normalized equations of single-axis attitude control of rigid spacecraft using pulse-width pulse-frequency modulator (PWPFM) is presented for rest-to-rest maneuvers. Using the quasi-normalized equations for attitude control reduces the system parameters, that is, the moment of inertia, the filter gain, and the maximum torque of ...

متن کامل

Theoretical Foundation of Copernicus: a Unified System for Trajectory Design and Optimization

The fundamental methods are described for the general spacecraft trajectory design and optimization software system called Copernicus. The methods rely on a unified framework that is used to model, design, and optimize spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The trajectory model, with its a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002